Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy.

نویسندگان

  • Haifeng Li
  • Wanqi Liang
  • Changsong Yin
  • Lu Zhu
  • Dabing Zhang
چکیده

Grass plants develop unique floral patterns that determine grain production. However, the molecular mechanism underlying the specification of floral organ identities and meristem determinacy, including the interaction among floral homeotic genes, remains largely unknown in grasses. Here, we report the interactions of rice (Oryza sativa) floral homeotic genes, OsMADS3 (a C-class gene), OsMADS13 (a D-class gene), and DROOPING LEAF (DL), in specifying floral organ identities and floral meristem determinacy. The interaction among these genes was revealed through the analysis of double mutants. osmads13-3 osmads3-4 displayed a loss of floral meristem determinacy and generated abundant carpelloid structures containing severe defective ovules in the flower center, which were not detectable in the single mutant. In addition, in situ hybridization and yeast two-hybrid analyses revealed that OsMADS13 and OsMADS3 did not regulate each other's transcription or interact at the protein level. This indicates that OsMADS3 plays a synergistic role with OsMADS13 in both ovule development and floral meristem termination. Strikingly, osmads3-4 dl-sup6 displayed a severe loss of floral meristem determinacy and produced supernumerary whorls of lodicule-like organs at the forth whorl, suggesting that OsMADS3 and DL synergistically terminate the floral meristem. Furthermore, the defects of osmads13-3 dl-sup6 flowers appeared identical to those of dl-sup6, and the OsMADS13 expression was undetectable in dl-sup6 flowers. These observations suggest that DL and OsMADS13 may function in the same pathway specifying the identity of carpel/ovule and floral meristem. Collectively, we propose a model to illustrate the role of OsMADS3, DL, and OsMADS13 in the specification of flower organ identity and meristem determinacy in rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.

AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meriste...

متن کامل

Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa.

The C-class MADS box gene AGAMOUS (AG) plays crucial roles in Arabidopsis thaliana development by regulating the organ identity of stamens and carpels, the repression of A-class genes, and floral meristem determinacy. To examine the conservation and diversification of C-class gene function in monocots, we analyzed two C-class genes in rice (Oryza sativa), OSMADS3 and OSMADS58, which may have ar...

متن کامل

The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice.

Genes that control ovule identity were first identified in Petunia. Co-suppression of both FLORAL BINDING PROTEIN 7 (FBP7) and FBP11, two D-lineage genes, resulted in the homeotic transformation of ovules into carpelloid structures. Later in Arabidopsis it was shown that three genes, SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK), redundantly control ovule identity, because in the stk shp1 shp...

متن کامل

The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa.

In this article, we report that carpel specification in the Oryza sativa (rice) flower is regulated by the floral homeotic gene DROOPING LEAF (DL) that is distinct from the well-known ABC genes. Severe loss-of-function mutations of DL cause complete homeotic transformation of carpels into stamens. Molecular cloning reveals that DL is a member of the YABBY gene family and is closely related to t...

متن کامل

The YABBYGeneDROOPING LEAF Regulates Carpel Specification andMidrib Development inOryza sativa W

In this article, we report that carpel specification in the Oryza sativa (rice) flower is regulated by the floral homeotic gene DROOPING LEAF (DL) that is distinct from the well-known ABC genes. Severe loss-of-function mutations of DL cause complete homeotic transformation of carpels into stamens. Molecular cloning reveals that DL is a member of the YABBY gene family and is closely related to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 156 1  شماره 

صفحات  -

تاریخ انتشار 2011